Abstract

We introduce a notion of I-factorial quantum torsor, which consists of an integrable ergodic action of a locally compact quantum group on a type I-factor such that also the crossed product is a type I-factor. We show that any such I-factorial quantum torsor is at the same time a I-factorial quantum torsor for the dual locally compact quantum group, in such a way that the construction is involutive. As a motivating example, we show that quantized compact semisimple Lie groups, when amplified via a crossed product construction with the function algebra on the associated weight lattice, admit I-factorial quantum torsors, and give an explicit realization of the dual quantum torsor in terms of a deformed Heisenberg algebra for the Borel part of a quantized universal enveloping algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.