Abstract

Most descriptions of higher-order vagueness in terms of traditional modal logic generate so-called higher-order vagueness paradoxes. The one that doesn't (Williamson's) is problematic otherwise. Consequently, the present trend is toward more complex, non-standard theories. However, there is no need for this. In this paper I introduce a theory of higher-order vagueness that is paradox-free and can be expressed in the first-order extension of a normal modal system that is complete with respect to single-domain Kripke-frame semantics. This is the system QS4M+BF+FIN. It corresponds to the class of transitive, reflexive and final frames. With borderlineness (unclarity, indeterminacy) defined logically as usual, it then follows that something is borderline precisely when it is higher-order borderline, and that a predicate is vague precisely when it is higher-order vague. Like Williamson's, the theory proposed here has no clear borderline cases in Sorites sequences. I argue that objections that there must be clear borderline cases ensue from the confusion of two notions of borderlineness—one associated with genuine higher-order vagueness, the other employed to sort objects into categories—and that the higher-order vagueness paradoxes result from superimposing the second notion onto the first. Lastly, I address some further potential objections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.