Abstract
Abstract The idea of I-convergence was introduced by Kostyrko et al (2001) and also independently by Nuray and Ruckle (2000) (who called it generalized statistical convergence) as a generalization of statistical convergence (Fast (1951), Schoenberg(1959)). For the last few years, study of these convergences of sequences has become one of the most active areas of research in classical Analysis. In 2003 Muresaleen and Edely introduced the concept of statistical convergence of double sequences. In this paper we consider the notions of I and I*-convergence of double sequences in real line as well as in general metric spaces. We primarily study the inter-relationship between these two types of convergence and then investigate the category and porosity position of bounded I and I*-convergent double sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.