Abstract

Comparative genomics is a powerful means to gain insight into the evolutionary processes that shape the genomes of related species. As the number of sequenced genomes increases, the development of software to perform accurate cross-species analyses becomes indispensable. However, many implementations that have the ability to compare multiple genomes exhibit unfavorable computational and memory requirements, limiting the number of genomes that can be analyzed in one run. Here, we present a software package to unveil genomic homology based on the identification of conservation of gene content and gene order (collinearity), i-ADHoRe 3.0, and its application to eukaryotic genomes. The use of efficient algorithms and support for parallel computing enable the analysis of large-scale data sets. Unlike other tools, i-ADHoRe can process the Ensembl data set, containing 49 species, in 1 h. Furthermore, the profile search is more sensitive to detect degenerate genomic homology than chaining pairwise collinearity information based on transitive homology. From ultra-conserved collinear regions between mammals and birds, by integrating coexpression information and protein–protein interactions, we identified more than 400 regions in the human genome showing significant functional coherence. The different algorithmical improvements ensure that i-ADHoRe 3.0 will remain a powerful tool to study genome evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.