Abstract

Computational algorithms for modeling of multiphase hydrodynamics processes with take of phase transitions will be discussed. The algorithms are based on discretization of conservation laws for mass, momentum, and energy in integral and differential forms. The time and spatial discretization is natural and numerical simulations are realized as direct computer experiments. The experiments are implemented as a computer simulation of the dynamics of a multiphase carrier fluid containing particles that can undergo, for example, graphite–diamond phase transitions and calculations are given. Modification of the algorithms have also been developed to take into account the influence of viscosity when simulating the dynamics of a multiphase fluid in porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.