Abstract

This paper demonstrates a hafnium zirconium oxide (HZO)-based ferroelectric NEMS unimorph as the fundamental building block for very low-energy capacitive readout in-memory computing. The reported device consists of a 250×30 μm2 unimorph cantilever with 20-nm-thick ferroelectric HZO on 1 μm SiO2. Partial ferroelectric switching in HZO achieves analog programmable control of the piezoelectric coefficient (d31), which serves as the computational weight for multiply accumulate (MAC) operations. The displacement of the piezoelectric unimorph was recorded by actuating the device with different input voltages Vin. The resulting displacement was measured as a function of the ferroelectric programming/poling voltage VP. The slopes of central beam displacement (δmax) vs Vin were measured to be between 182.9 nm/V (for −8 Vp) and −90.5 nm/V (for 8 Vp), which corresponds to displacement proportionality constant β of 68 nm/V2 for +ve Vp and 47 nm/V2 for −ve Vp, demonstrating linear behavior of the multiplier unit. The resultant δmax from AC actuation is in the range of −18 to 36 nm and is a scaled product of Vin and programmed d31 (governed by the Vp). The multiplication function serves as the fundamental unit for MAC operations with the ferroelectric NEMS unimorph. The displacement from many such beams can be added by summing the capacitance changes, providing a pathway to implement a multi-input and multi-weight neuron. A scaling and fabrication analysis suggests that this device can be CMOS compatible, achieving high in-memory computational throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.