Abstract

BackgroundThe genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines.ResultshZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1.ConclusionThe studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous glands is likely due to in situ gene silencing. These observations, coupled with the numerous and consistent reports of loss of zinc accumulation in malignant cells in prostate cancer, lead to the plausible proposal that down regulation of hZIP1 is a critical early event in the development prostate cancer.

Highlights

  • The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified

  • This caused us to initiate preliminary studies to determine if ZIP1 gene expression and/or the level of the transporter protein might be down-regulated in malignant prostate glands in comparison to the expression in normal prostate glandular epithelium

  • The studies reveal that hZIP1 gene expression is down-regulated and hZIP1 transporter protein is depleted in adenocarcinomatous glands in prostate cancer

Read more

Summary

Introduction

The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. It is well established that the normal peripheral zone has the function of accumulating extremely high zinc levels that are 3–10-fold greater than found in other soft tissues [3] This capability resides in the highly specialized glandular secretory epithelial cells of the peripheral zone, which we characterize as "zincaccumulating" cells. The malignant prostate cells that develop in the peripheral zone do not contain the high zinc levels that characterize the normal secretory epithelial cells. Habib [11] reported that the decrease in zinc occurs early in malignancy These persistent results, and the additional corroborating evidence presented below, firmly establish that the unique zinc-accumulating capability of the normal peripheral zone secretory epithelial cells is lost in the neoplastic transformation to malignant cells; and that zincaccumulating malignant cells do not exist in situ in prostate cancer. For extensive presentations of the relationships of zinc in normal prostate and prostate cancer, we refer the reader to our recent reviews [12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call