Abstract

We have studied in this paper,by performing the Monte Carlo numerical simulation,both the hysteretic scaling and the dynamical phase transition of a three-dimen sional,(3D) classical X-Y model driven by an sinusoidally oscillating external m agnetic field.A scaling formula has been worked out which relates the hysteresis loop area with the amplitude h0 and frequency ω of the external fie ld as wel l as the reduced temperature T/Tc of the system in the form:Area~hα0ωβ(1-T/Tc)γ.The best-fit expo nents are α=0.57,β=0.34 and γ=0.9.The 3D X- Y model also characterizes a distinctive discrepancy in dynamical transition fea ture after short and long term evolution of magnetization,respectively.Our simul ation disclosed that the short-term evolution of magnetization (period number≤1 0) attains the symmetry-breaking of system with a nonzero dynamical order parame ter (Q≠0) at a either critical amplitude h0c or frequency ωc.The symme try-breaking in short term,however,evolves steadily into a symmetric disorder st ate (Q=0) after a longer term relaxation of system.The specific relaxation times at which the Q value becomes zero from nonzero increase evidently as the temper ature of system drops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.