Abstract

Nitrous oxide (N2O) contributes to increasing the greenhouse effect and is also involved in stratospheric ozone depletion. In soil and water, N2O reductase catalyses the reduction of N2O into the inert form N2 and is then considered as a key environmental enzyme. N2O reductase activity is known to be affected by acidic conditions (Samad et al. 2016) and the application of liming materials to acidic soils is now proposed as a solution for mitigating soil N2O emissions (Barton et al. 2013). During a one-year laboratory experiment, we studied the functioning of N2O reductase after the application of calcium carbonates to an acidic soil with initially a very low capacity to reduce N2O. The functioning of N2O reductase was characterised through anaerobic incubations using the acetylene inhibition technique combined with a logistic model to determine the main enzyme functioning characteristics (latency, maximal rate). Both changes in soil pH and soil capacity to reduce N2O were rapidly observed after the application of lime materials. The activity of N2O reductase was observed to be efficient throughout the experiment even when the soil had returned to initial acidic conditions, revealing a hysteretic response of N2O reductase to pH variations. Nevertheless, some signs of lower N2O reductase activity over time were observed mainly after 200 days of applying lime materials. Altogether, these results suggest that, in this soil condition, the beneficial impact of the application of liming materials on N2O emissions could last longer than this on soil pH. Keywords: Climate change mitigation · N2O reductase · Soil · pH · Lime application · Logistic modelling  

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call