Abstract

Graphene field effect transistors (GFETs) fabricated by chemical vapor deposition graphene deposited onto SiC substrates exhibit sensitivity to broadband visible light. The hysteretic nature of this GFET type was studied utilizing a new current-voltage measurement technique in conjunction with current-time measurements. This measurement method accounts for hysteretic changes in graphene response and enables transfer measurements that can be attributed to fixed gate voltages. Graphene hysteresis is shown to be consistent with electrochemical p-type doping, and current-time measurements clearly resolve a hole to electron to hole carrier transition in graphene with a single large change in gate voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.