Abstract

This paper focuses on the hysteretic performance of stainless steel beam-to-column joints with double extended end-plate connections under cyclic loading. Six full-scale joint specimens were fabricated, including three interior column joints and three exterior column joints. Two stainless steel grades — austenitic grade EN 1.4301 and duplex grade EN 1.4462, and one carbon steel grade Q345B were considered. A4-80 stainless steel bolts and grade 10.9 high strength steel bolts were employed to assemble the joint specimens. The cyclic loading tests were conducted using the loading protocol set in Chinese standard JGJ/T 101. The force versus displacement (F-Δ) hysteresis curves were recorded, and the failure modes, the ductility, the strength and stiffness degradation, and the energy dissipation capacity of the tested joints were analysed and discussed in detail. Empirical hysteresis models were developed and calibrated against the recorded hysteretic curves and energy dissipation capacities of the tested joints. The experimental results involving the initial rotational stiffness values and the moment resistances were further utilised to evaluate the accuracy of current design provisions codified in EN 1993-1-8, ANSI/AISC 358 and GB 51022. The comparison shows that the development of accurate design guidance accounting for the pronounced strain hardening of stainless steels is warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.