Abstract

A hysteretic model of reinforced concrete (RC) bridge piers in saline soil environment, incorporating corrosion-induced overall structural degradation, is obtained based on earthquake damage by applying damage parameter. A damage analysis of the observed 13 RC bridge piers tested under cyclic loading including cracks evolution, residual deformation, relative unloading degradation, cyclic unloading stiffness degradation and strength deterioration is presented. A quantification approach for seismic damage considers the sources of deterioration: i.e., number of loading cycles and controlled displacements and incorporates a deterioration parameter aiming to control the deterioration modes. The skeleton model consists of three segments and is determined by simplifying the experimental skeleton curve. Yield strength reduction and sectional loss of reinforcement are computed to characterize the corrosion-induced degradation. It is determined that the equivalent skeleton model could match the experimental results. The applicability as well as accuracy of proposed model in simulating the hysteretic behaviours are calibrated by comparing the model with the experimental curves. The model is capable to approximate the complete hysteretic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.