Abstract

The behavior of bolted beam-to-column connections in steel and composite frames has a significant effect on their structural response to strong ground motion. Their hysteretic response exhibits highly inelastic characteristics and continuous variation in stiffness, strength and ductility, hence they influence both supply and demand. Therefore, accurate hysteretic models of bolted connections are essential to accurate seismic assessment and design. In this paper, a novel hybrid modeling approach is proposed to represent the complex hysteretic behavior of bolted connections when frames are subject to strong ground motion from earthquakes. The basic premise of the proposed approach is that not all features of connection response are amenable to mechanical modeling; hence consideration of information-based alternatives is warranted. In the hybrid mechanical–informational modeling (HMIM) framework, the conventional mechanical model is complemented by information-based model components. The informational components represent aspects of the behavior that the mechanical model leaves out. The performance of HMIM is illustrated through applications to flange-plate connections, which exhibit highly pinched hysteretic behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.