Abstract
This article addresses the exponential input-to-state stabilization problem for switched reaction–diffusion systems, in which the systems’ mode jumping complies with the persistent dwell-time switching mechanism. On the basis of point measurement, a novel pointwise controller is designed to reduce the amount of sensors and actuators. Then, a hysteresis quantizer with an adjustable parameter is employed to balance the quantitative effect and system’s performance, which can improve the bandwidth utilization of the network, simultaneously. Finally, the effectiveness of the proposed approach is demonstrated by an application of the temperature control of power semiconductor chips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.