Abstract

We give a systematic comparison of a molecular model for a CO 2 laser with a fast saturable absorber and a reduced version of this model. Overall, we find that there is good agreement between these models. We use numerical continuation algorithms to analyze the bifurcation structure of the equations, and complement the results by numerical simulations to model possible experiments. Our study predicts the existence of isolas of periodic passive Q-switching self-pulsations and a rich structure of Q-intervals of stability for these periodic orbits, where Q represents the incoherent pump of the laser. These intervals correspond to the observed phenomenon known as period-adding cascades. Computed loci of codimension-1 bifurcations show that a small shift of a secondary parameter in the reduced model with respect to that of the complete model substantially improves their quantitative agreement. This parameter is associated with the action of the Stark effect in the absorber. We also discuss a necessary condition for chaotic windows to arise as Q changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.