Abstract
In this paper we report on a novel method to fabricate graphene transistors directly on oxidized silicon wafers without the need to transfer graphene. By means of catalytic chemical vapor deposition (CCVD) the in situ grown monolayer graphene field-effect transistors (MoLGFETs) and bilayer graphene field-effect transistors (BiLGFETs) are realized directly on oxidized silicon substrate. In situ CCVD grown BiLGFETs possess unipolar p-type device characteristics with an extremely high on/off-current ratio up to 1 × 10 7 . With this novel fabrication method hundreds of large scale in situ CCVD grown graphene FETs are realized simultaneously on one 2’’ wafer in a silicon CMOS compatible process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.