Abstract
With the growth of hard disk storage, it would be difficult to meet the specification of the high track density with conventional single actuator. Therefore the next generation of high speed hard disk drive uses the concept of dual-stage actuated hard disk drive where a secondary actuator is mounted onto the VCM actuator. This helps to achieve higher servo bandwidth and, therefore, more precise tracking. Improved tracking error allows higher track density and hence higher storage capacity. Piezoelectric actuator has been a popular choice as the secondary stage. However, the piezoelectric actuators exhibit an unavoidablecharacteristic of hysteresis which causes inaccuracies and oscillations in the system responses.In this paper, the hysteresis behaviour is investigated for asuspension based PZT actuator which is used as the secondary actuator of HDD available in the market. The Generalized Prandtl-Ishlinskii (GPI) hysteresis model which is a phenomenological based model is obtained usingnon-linear least square curve-fitting. In the secondexperiment, a second order linear dynamics model of the PZT actuator is obtained using frequency response identificationmethod. High frequency resonance modes of the PZT actuator are eliminated using a notch filter. By integrating the obtained GPI hysteresis model with this second-order lineardynamics, a nonlinear dynamic model and an inverse feedforward controller are developed.Preliminary simulation results demonstrate that inverse feedforward controller can be appliedfor precise tracking of triangular and multiple frequency sinusoidal trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.