Abstract

Some general dynamical properties of models for compaction of granular media based on master equations are analyzed. In particular, a one-dimensional lattice model with short-ranged dynamical constraints is considered. The stationary state is consistent with Edward's theory of powders. The system is submitted to processes in which the tapping strength is monotonically increased and decreased. In such processes the behavior of the model resembles the reversible–irreversible branches which have been recently observed in experiments. This behavior is understood in terms of the general dynamical properties of the model, and related to the hysteresis cycles exhibited by structural glasses in thermal cycles. The existence of a “normal” solution, i.e., a special solution of the master equation which is monotonically approached by all the other solutions, plays a fundamental role in the understanding of the hysteresis effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.