Abstract

The ability to predict the effects of climate change on trace gas fluxes requires a knowledge of microbial temperature responses. However, the response of a microbial community to temperature in a given substrate may be complicated by its thermal history. To examine the effect of sequentially changing temperature on methane and carbon dioxide production in different peat types, we incubated anaerobic peat samples from 3 types of northern peatlands, a bog, a sedge fen and a cedar swamp, in both rising and falling temperature regimes. Graphic and statistical comparisons of the different temperature regimes suggest hysteresis in microbial response to temperature, although the absolute rates at any given temperature often did not differ. Where regressions for temperature response (Arrhenius plots) were significant, they generally differed between temperature regimes. The greatest differences among treatments occurred during the first half of the 40-d incubation. Increases in carbon dioxide production were similar across all peat types, but methanogenesis varied widely: methane production was uniformly low in the bog peat but increased sharply with temperature in the other two peat types. The complicating effect of history or chronology on substrate responses to environmental stimuli may restrain our ability to model the responses of complex systems to changing conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call