Abstract

Recently some papers on measurements of the I-V characteristics (where V is the time-averaged voltage) of superconducting indium microbridges 1 as well as tin and zinc whiskers 2,3 driven by a dc current into the phase-slip state have appeared. Special emphasis was placed on a discussion of the hysteresis, which is well-known in such experiments (see, e.g., Refs.1–18 in Kramer and Rangel 4 ). The hysteresis was compared with the predictions of the generalized time-dependent Ginzburg-Landau (GTDGL) equations for dirty superconductors in local equilibrium. 4,5 Unfortunately these predictions represent the only results in this context derived ultimately in a rigorous fashion from the standard microscopic theory of superconductivity. Comparison was also made with a model by Kadin, Smith, and Skocpol (KSS), 6,7 which gives a much smaller hysteresis. The authors of Ref. 1 found good agreement with the KSS model. The authors of Refs. 2 and 3 found a hysteresis which is larger than that of the KSS model, but still considerably smaller than predicted by GTDGL theory. They proposed a generalization of KSS which can be fitted to the data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call