Abstract

When elements of a parallel network, such as the human brain, are extensively interconnected, the network can exhibit 'cooperative behaviour'. Such behaviour, which is characterized by order-disorder transitions, multi-stable states, and a form of memory called 'hysteresis', has been observed in human stereopsis and has motivated models of stereopsis that incorporate cooperative networks. More recently, cooperative phenomena have also been observed in human visual motion perception. This report strongly supports a cooperative interpretation of motion perception by demonstrating hysteresis in the perception of motion direction. The results agree quantitatively with a mathematical model incorporating nonlinear excitatory and inhibitory interactions among direction-selective elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.