Abstract

Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.