Abstract

The hepatitis B virus (HBV) must release its contents to initiate infection, making capsid disassembly critical to the viral life cycle. Capsid assembly proceeds through a cascade of weak interactions between copies of capsid protein (Cp) to yield uniform particles. However, there is a hysteresis to capsid dissociation that allows capsids to persist under conditions where they could not assemble. In this study, we have sought to define the basis of hysteresis by examining urea-induced dissociation of in vitro-assembled HBV capsids. In general, capsid samples show a mixture of two pools, differentiated by stability. Labile capsid dissociation corresponds to an ∼5 μM pseudocritical concentration of assembly (pcc), the same as that observed in assembly reactions. Dissociation of the stable pool corresponds to a subfemtomolar pcc, indicative of hysteresis. The fraction of stable capsids in an assembly reaction increases with the integrity of the Cp preparation and when association is performed at a higher ionic strength, which modifies the Cp conformation. Labile complexes are more prevalent when assembly conditions yield many kinetically trapped (incomplete and overgrown) products. Cp isolated from stable capsids reassembles into a mixture of stable and labile capsids. These results suggest that hysteresis arises from an ideal capsid lattice, even when some of the substituents in that lattice have defects. Consistent with structural studies that show a subtle difference between Cp dimers and Cp in capsid, we propose that hysteresis arises when HBV capsids undergo a lattice-dependent structural transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call