Abstract

Hysteresis in flame stabilization mode transitions in a hydrogen-fueled strut-stabilized supersonic combustion test rig was experimentally observed and studied. Air was vitiated using H2–O2 combustion products to stagnation conditions of 8.65 bar and 1350 K and was expanded through a rectangular nozzle to Mach number 2.5. H2 fuel was injected transversely using a strut positioned at the center of the combustor. The equivalence ratio (ER) was changed in time to study its effects on flame stabilization modes. Shadowgraph and wall pressure measurements were used to study the shock system generated by the strut in the supersonic combustor. High-speed OH∗ chemiluminescence and high-speed flame imaging were used to study the heat release zones and flame structure of different combustion modes and transitions between them. Three different combustion modes were observed, namely: divergent section flame (CM1), strut wake stabilized flame (CM2), and jet stabilized flame (CM3). CM1 was observed at a very low ER, where the H2 was ignited by the normal shock positioned in the divergent section. At this point, the weak shock system at the strut is unable to ignite the fuel. At higher ER, CM2 was observed, as a stronger shock system ignites the richer mixture at the wake of the strut. It was observed that the mixture auto-ignites in the strut wake and doesn't flashback from the divergent section. When the ER is further increased, the stronger injection shock reduces the local velocity and increases the static temperature, enhancing the flame speed of the richer mixture. Thus, the flame flashes back to the fuel jet. Two hysteresis were observed in the supersonic combustor based on ER as a time-varying input. The flame stabilization mode has two solutions based on the history of the change in ER, hence indicating hysteresis. The hysteresis between CM1 and CM2 is because of the retention of the temperature and radicals in the recirculation zone at the wake of the strut. The hysteresis between CM3 and CM2 is because of the retention of the temperature and radicals in the horseshoe vortices around the fuel jets. Understanding hysteresis will help design scramjets with wider operability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call