Abstract

Faraday waves arise on the surface of a liquid in a container that is undergoing vertical periodic oscillations. Hysteresis occurs when both finite-amplitude solutions and the flat-surface solution are available. We derive a nonlinear model of Faraday resonance, extending the Lagrangian method of Miles (1976). The model is used to investigate hysteresis. The theoretical results are compared to previous experimental studies and to some new observations. It is found necessary to retain damping and forcing terms up to third-order in wave amplitude, and also the fifth-order conservative frequency shift, in order to achieve agreement with experiments. The latter fifth-order term was omitted from all previous studies of Faraday waves. The lower hysteresis boundary in forcing-frequency space is found in most cases to be defined by the lower boundary above which non-trivial stationary points exist. However, the stability of stationary points and the existence of limit cycles are also found to be factors in determining the lower hysteresis boundary. Our results also suggest an indirect method for estimating the coefficient of cubic damping, which is difficult to obtain either experimentally or theoretically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.