Abstract

This paper presents a simple technique based on well-known multilayer perceptron (MLP) neural network with back propagation training algorithm for compensating the significant error due to hysteresis in a porous silicon relative humidity sensor. The porous silicon humidity sensor has been fabricated, and its hysteresis with increasing and decreasing relative humidity has been determined experimentally by a novel phase detection circuit. Simulation studies show that the artificial neural network (ANN) technique can be effectively used to compensate the hysteresis of the porous silicon sensor for relative humidity (%RH) measurement. A hardware implementation scheme of the hysteresis compensating ANN model using a micro-controller is also proposed. Simulation studies show that the maximum error is within ±1% of its full-scale value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.