Abstract

Although auxetic (negative Poisson’s ratio) materials and structures have unique mechanical properties, their application in earthquake-resistant structures is rarely reported. This paper proposed a novel Auxetic Perforated Steel Plate Shear Wall (AP-SPSW) for seismic mitigation in building structures. The AP-SPSW incorporates the unique mechanical properties of auxetic materials and structures to reduce out-of-plane buckling and improve seismic performance of SPSWs. Both elliptical and peanut-shaped perforation configurations were proposed for the AP-SPSW. Through small-scale numerical simulations of the auxetic unit cells, the deformation mode of the auxetic perforated material was discussed and a preliminary design was presented to ensure the materials with negative Poisson’s ratio. In addition, ten AP-SPSW specimens were prepared for cyclic loading tests, which demonstrated that the AP-SPSW possesses stable hysteresis behavior and excellent energy dissipation capacity. Key parameters affecting the hysteresis performance of the AP-SPSW were identified as porosity of the perforated panel and thickness of the ligament between neighboring perforations. This study also focused on the global shear buckling behavior of the auxetic perforated panel plates. It was found that the auxetic deformation mechanism benefits shear buckling resistance in the SPSW panel. Finally, an analytical model was proposed for the shear strength of the auxetic panel. The limitations of this study were also discussed, along with the work required for further exploration. The results of this study provide valuable insights for the development of innovative seismic-resistant structures that incorporate auxetic materials and structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call