Abstract

The packing fraction and the pressure drop across gas-fluidized beds of granular media exhibit hysteresis as the gas-flow rate is cycled up and down across the fluidization transition. Presumably this is due to contact forces and transfer of stress to the surrounding walls, and hence should vary nontrivially with the aspect ratio of the sample. Here we present systematic measurements of the variation of hysteresis with particle size and aspect ratio of the sample. Remarkably, the hysteresis scales in a trivial way with these parameters, showing no evidence of long-range effects of the wall. Our measurements also show that the packing fraction becomes 0. 590+/-0.004, independent of particle size and container shape, when the fluidizing flow of gas flow is slowly removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.