Abstract

A hysteresis loop has been observed during the E–H mode transition in an inductively coupled plasma at high pressures. The cause of the hysteresis has been reported as a nonlinearity of the transferred and dissipated powers due to capacitive coupling, multi-step ionization, the change in the electron energy probability function (EEPF), and so on [M. M. Turner and M. A. Lieberman, Plasma Sources Sci. Technol. 8(2), 313–324 (1999) and H. C. Lee and C. W. Chung, Sci. Rep. 5, 15254 (2015)]. However, when a coil current reduction is considered, the previous interpretation of hysteresis cannot explain the observations in the intermediate pressure region, where the coil current reduction occurs, but hysteresis is not observed. In this work, the E–H mode transition and its hysteresis are discussed in three pressure regions, the low, intermediate, and high pressure regions, whether or not the coil current and the hysteresis are observed. The power transfer efficiency, transferred power, EEPF, and total energy loss are obtained at 10, 100, and 300 mTorr. Hysteresis is only observed at 300 mTorr, and the coil current reduces at 100 and 300 mTorr during the E–H mode transition. The mechanism of hysteresis is explained in a power balance diagram that includes the transferred power and the dissipated power by considering the power transfer efficiency in the E and H modes. In addition, the conditions of hysteresis and coil current reduction are revealed and classified in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.