Abstract

This paper presents a computational framework for modeling hybrid systems in discrete-time. We introduce the class of discrete hybrid automata (DHA) and show its relation with several other existing model paradigms: piecewise affine systems, mixed logical dynamical systems, (extended) linear complementarity systems, min-max-plus-scaling systems. We present HYSDEL (hybrid systems description language), a high-level modeling language for DHA, and a set of tools for translating DHA into any of the former hybrid models. Such a multimodeling capability of HYSDEL is particularly appealing for exploiting a large number of available analysis and synthesis techniques, each one developed for a particular class of hybrid models. An automotive example shows the modeling capabilities of HYSDEL and how the different models allow to use several computational tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.