Abstract

Hypoxia is a principal signature of the tumor microenvironment and is considered to be the most important cause of clinical radioresistance and local failure. Oxygen is so far the best radiosensitizer, but tumor oxygenation protocols are compromised by its metabolic consumption and therefore limited diffusion inside tumors. Many chemical radiosensitizers can selectively target hypoxic tumor cells, but their systemic toxicity compromises their adequate clinical use. NO is an efficient hypoxic radiosensitizer, as it may mimic the effects of oxygen on fixation of radiation-induced DNA damage, but the required levels cannot be obtained in vivo because of vasoactive complications. Our laboratory explored whether this problem may be overcome by endogenous production of NO inside tumors. We demonstrated that iNOS, activated by pro-inflammatory cytokines, is capable of radiosensitizing tumor cells through endogenous production of NO, at non-toxic extracellular concentrations. We observed that this radiosensitizing effect is transcriptionally controlled by hypoxia and by NF-κB. Tumor-associated immune cells may contribute to the iNOS-mediated radiosensitization by the generation of pro-inflammatory cytokines and NO, which may diffuse towards bystander tumor cells. Our findings indicate a rationale for combining immunostimulatory and radiosensitizing strategies in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.