Abstract

Cardiac muscle adaptation is essential for maintaining physical capacity after ascending to high altitude. This study examines the effects of high altitude training on myocardial metabolic enzyme activity and composition of alpha-myosin heavy chain (MHC). Rats were randomly divided into normobaric sedentary (NS) and training (NT) groups, and hypobaric sedentary (HS) and training (HT) groups. HS and HT rats were exposed to hypobaric hypoxia (simulated 4,000-5,000 m) for 5 weeks (24 h/day), and HT rats simultaneously received swim training. Hypoxia exposure for 5 weeks led to a decrease in succinate dehydrogenase (SDH) and citrate synthase (CS) activities in the left ventricle (LV), and a decrease in CS, hexokinase (HK) and total lactate dehydrogenase (LDH) activities in the right ventricle (RV) (p < 0.05, HS vs. NS). Furthermore, 1 h/day swim training during hypoxia exposure enhanced the CS activity in LV and the SDH and CS activities in RV (p < 0.05, HT vs. HS). The percentages of alpha-MHC in both ventricles in HT were higher than those in HS (p < 0.05). We conclude that exercise training at high altitude is beneficial for cardiac muscle adaptation to hypoxia by increasing activities of enzymes and percentage of alpha-MHC. This may contribute to improved cardiac function and work capacity at high altitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call