Abstract

Tolerance of hypoxia in Chinese black sleeper (Bostrichthys sinensis) embryos at heartbeat stage was examined at different oxygen concentrations. Embryonic response to hypoxic conditions was expressed in terms of the intensity of variation in heartbeat rate (V). Exposure of the embryos at 25°C to 0.5, 1.0 and 1.5 mg/l dissolved oxygen (DO), caused bradycardia, which was developed within the first 10 min of hypoxia, followed by a plateau, and lasted until termination of the hypoxia. The V values were significantly affected by DO concentrations (P<0.01). Exposure of the embryos to 0.2 mg/l DO at 25°C caused a periodic heartbeat (including a period of heartbeat and a period of silence). This phenomenon was first recorded in the present study. During the period of heartbeat, the heartbeat rates were faster at first (147±5 beats per min), and then decreased gradually until the period of silence. As the exposure time increased, the duration of heartbeat was prolonged significantly from 43.4±2.4 second to 126.2±8.2 second (P<0.01), and the duration of silence was also prolonged significantly from 68.0±5.5 second to 247.9±11.5 second (P<0.01). At the beginning of exposure, the primary heartbeat rates displayed tachycardia, and their V values were significantly lower than the V values of average heartbeat rates (P<0.05). However, the V values were not significantly different between primary heartbeat rate and average heartbeat rate after 90 min exposure (P>0.05).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.