Abstract

The Indian catfish, Clarias magur (previous name C. batrachus) is an air breathing fish, inhabitant of aquatic bodies characterized by low dissolved oxygen levels. It is exposed to hypoxic conditions in its natural habitat. Thus, it can be useful model to study the mechanism of hypoxia stress tolerance. In C. magur, molecular processes facilitating its adaptation to hypoxia stress remain largely unexplored, in part due to unavailability of genomic resources. The suppression subtractive hybridization technique (SSH) was employed to compare the differential expression of transcripts under experimental hypoxic conditions, to that of normoxic conditions. Twelve subtracted cDNA libraries (six each forward and reverse) were constructed from brain, heart, liver, muscle, spleen and head kidney tissues. A total of 2020 clones were screened and sequenced, resulting into 1805 high quality expressed sequence tags (ESTs). Annotation of these differentially expressed ESTs resulted into the identification of genes involved in vast majority of pathways/processes affecting metabolism, cellular processes, signal transduction and/or immune functions. Additionally, 18 potential novel genes expressed in hypoxia stress exposed fish were also identified. The study had catalogued the differentially expressed genes from hypoxia stress induced C. magur, where most of them are reported for the first time in a hypoxia-tolerant fish species. The results not only provided insights for the hypoxia stress altered cellular functions in C. magur, but also generated a valuable functional genomics resource to assist targeted studies on functional genomics and future genome projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call