Abstract

Aim Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the chronic inflammation of the pancreatic islets of Langerhans. Hyperglycaemia leads to suppressed antioxidant enzyme and increased inflammation in the pancreatic cell, resulting in pancreatic cell death. Hypoxic secretome mesenchymal stem cells (HS-MSCs) are soluble molecules secreted by MSCS that have the antiinflammation ability by secreting various cytokines including IL-10 and TGF-β which potent as a promising therapeutic modality for T1DM. This study aims to investigate the role of HS-MSCs in regulating superoxide dismutase (SOD) and caspase-3 gene expression in T1DM model. Methods Twenty male Wistar rats (6 to 8 weeks old) were randomly divided into four groups (sham, control, HS-MSCs 0.5 mL and HS-MSCs 1 mL intraperitoneal treatment group). Streptozotocin (STZ) 60mg/kgBB was conducted once on day 1, HS-MSCs 0.5mL (T1) and HS-MSCs 1 mL (T2) were administrated intraperitoneally on day 7, 14, and 21 after STZ administration. The rats were sacrificed on day 28; the gene expression of SOD and IL-6 was analysed by qRT-PCR. Results This study showed that the ratio of SOD significantly increased in HS-MSCs treatment associated with suppression of IL-6 gene expression. Conclusion HS-MSCs administration suppresses oxidative stress and inflammation by up regulating SOD and inhibiting IL-6 to control T1DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.