Abstract

Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electro- and pharmacomechanical mechanisms are involved in regulating pulmonary vasomotor tone, whereas intracellular Ca(2+) serves as an important signal in regulating contraction and proliferation of pulmonary artery smooth muscle cells. Herein, we provide a basic overview of the cellular mechanisms involved in the development of hypoxic pulmonary vasoconstriction. Our discussion focuses on the roles of ion channels permeable to K(+) and Ca(2+), membrane potential, and cytoplasmic Ca(2+) in the development of acute hypoxic pulmonary vasoconstriction and chronic hypoxia-mediated pulmonary vascular remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.