Abstract

Hypoxic pulmonary vasoconstriction (HPV) is the most important feature of intact lung circulation that matches local blood perfusion to ventilation. The main goal of this work was to study the effects of diabetes on the development of HPV in rats. The experimental design comprised diabetes mellitus induction by streptozotocin, video-morphometric measurements of the lumen area of intrapulmonary arteries (iPAs) using perfused lung tissue slices and patch-clamp techniques. It was shown that iPA lumen size was significantly reduced under physical and chemical hypoxia (7-10mm Hg) in normal iPA, but, on the contrary, it clearly increased in diabetic lung slices. The amplitude of the outward K+ current in diabetic iPAs smooth muscle cells (SMCs) was two-fold greater than that seen in healthy cells. Chemical hypoxia led to significant decrease in the amplitude of the K+ outward current in healthy iPA SMCs while it was without effect in diabetic cells. The data obtained clearly indicate a significant dysregulation of vascular tone in pulmonary circulation under diabetes, ie diabetes damages the adaptive mechanism for regulating blood flow from poorly ventilated to better ventilated regions of the lung under hypoxia. This effect could be clinically important for patients with diabetes who have acute or chronic lung diseases associated with the lack of blood oxygenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.