Abstract

Our previous study has shown that slow or "controlled" reperfusion for the ischemic heart reduces cardiomyocyte injury and myocardial infarction, while the mechanisms involved are largely unclear. In this study, we tested the hypothesis that enhancement of survival and prevention of apoptosis in hypoxic/reoxygenated cardiomyocytes by hypoxic postconditioning (HPC) are associated with the reduction in peroxynitrite (ONOO(-)) formation induced by hypoxia/reoxygenation (H/R). Isolated adult rat cardiomyocytes were exposed to 2 h of hypoxia followed by 3 h of reoxygenation. After 2 h of hypoxia the cardiomyocytes were either abruptly reperfused with pre-oxygenized culture medium or postconditioned by two cycles of 5 min of brief reoxygenation and 5 min of re-hypoxia followed by 160 min of abrupt reoxygenation. H/R resulted in severe injury in cardiomyocytes as evidenced by decreased cell viability, increased LDH leakage in the culture medium, increased apoptotic index (P values all less than 0.01 vs. normoxia control group) and DNA ladder formation, which could be significantly attenuated by HPC treatment applied before the abrupt reoxygenation (P < 0.05 vs. H/R group). In addition, H/R induced a significant increase in ONOO(-) formation as determined by nitrotyrosine content in cardiomyocytes (P < 0.01 vs. normoxia control). Treatment with the potent ONOO(-) scavenger uric acid (UA) at reoxygenation significantly decreased ONOO(-) production and protected myocytes against H/R injury, whereas the same treatment with UA could not further enhance myocyte survival in HPC group (P > 0.05 vs. HPC alone). Statistical analysis showed that cell viability closely correlated inversely with myocyte ONOO(-) formation (P < 0.01). These data demonstrate that hypoxic postconditioning protects myocytes against apoptosis following reoxygenation and enhances myocytes survival, which is partly attributable to the reduced ONOO(-) formation following reoxygenation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.