Abstract

Chronic hypoxia and ischemia make diabetic wounds non-healing. Cellular functions of diabetic chronic wounds are inhibited under a pathological environment. Therefore, this work develops a composite hydrogel system to promote diabetic wound healing. The composite hydrogel system consists of ε-poly-lysine (EPL), calcium peroxide (CP), and borosilicate glass (BG). The hydrogel supplies continuous dissolved oxygen molecules to the wound that can penetrate the skin tissue to restore normal cellular function and promote vascular regeneration. Biofunctional ions released from BGs can recruit more macrophages through neovascularization and modulate macrophage phenotypic transformation. Combining oxygen-mediated vascular regeneration and ion-mediated inflammatory regulation significantly accelerated diabetic wound healing. These findings indicate that this composite hydrogel system holds promise as a novel tissue engineering material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.