Abstract

We examined the magnitude of the hypoxic metabolic response in golden-mantled ground squirrels to determine whether the shift in thermoregulatory set point (T(set)) and subsequent fall in body temperature (T(b)) and metabolic rate observed in small mammals were greater in a species that routinely experiences hypoxic burrows and hibernates. We measured the effects of changing ambient temperature (T(a); 6--29 degrees C) on metabolism (O(2) consumption and CO(2) production), T(b), ventilation, and heart rate in normoxia and hypoxia (7% O(2)). The magnitude of the hypoxia-induced falls in T(b) and metabolism of the squirrels was larger than that of other rodents. Metabolic rate was not simply suppressed but was regulated to assist the initial fall in T(b) and then acted to slow this fall and stabilize T(b) at a new, lower level. When T(a) was reduced during 7% O(2), animals were able to maintain or elevate their metabolic rates, suggesting that O(2) was not limiting. The slope of the relationship between temperature-corrected O(2) consumption and T(a) extrapolated to a T(set) in hypoxia equals the actual T(b). The data suggest that T(set) was proportionately related to T(a) in hypoxia and that there was a shift from increasing ventilation to increasing O(2) extraction as the primary strategy employed to meet increasing metabolic demands under hypoxia. The animals were neither hypothermic nor hypometabolic, as T(b) and metabolic rate appeared to be tightly regulated at new but lower levels as a result of a coordinated hypoxic metabolic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.