Abstract

Abstract 3417The identification of specific microenvironments, in which Hematopoietic Stem and Progenitor Cells (HSPCs), reside within the BM is a major challenge in stem cell biology. Yet the extreme rarity of HSCs, their dynamic nature, and the lack of unique specific markers to identify them, have precluded an accurate definition of HSC niches to date. Using Laser Scanning Cytometry, a powerful emerging quantitative imaging technology that enables analysis of whole femoral sections at the single cell level, we have mapped the global distribution of hematopoietic stem and progenitor cells within femoral bone marrow cavities, and analyzed their inmediate surrounding microenvironment.Systematic mapping of the global distribution of endogenous HSPC-enriched populations in the BM, revealed an accumulation of these cells inside endosteal regions (ER <100μm from inner bone surface), but not necessarily in contact with endosteal surfaces. Interestingly, the vast majority of HSPCs were found in direct association with BM micrrovessels, further supporting previous work, which suggested bone marrow endothelium as a major component of HSPC niches. By employing a novel imaging approach, we provide a three-dimensional (3D) microscopic overview of the unique BM vascular network found in endosteal zones, which contain the transition of bone-lining arterioles and capillaries to the sinusoidal network. Of note, HSPC association to vascular structures is not restricted to sinusoids. A significant fraction of HSPCs lied adjacent to non-sinusoidal endothelium. Using five-color imaging cytometry and pimonidazole incorporation, we have assessed the hypoxic state of HSPCs in different BM microenvironments. Our in situ analysis reveals that intracellular hypoxia is a hallmark of HSPCs, independent of their distance to bone surfaces, and more importantly, regardless of their perivascular localization. These studies provide unequivocal anatomical evidence for the intrinsic rather than environmental regulation of intracellular hypoxia in HSPCs and challenge the hypothesis of a “super hypoxic” HSPC niche. Disclosures:No relevant conflicts of interest to declare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.