Abstract

Following prolonged hypoxia, mammalian cells invoke adaptive mechanisms to enhance oxygen delivery and promote energy conservation. We previously reported that hepatocytes subjected to prolonged moderate hypoxia (PO2 = 20-50 mmHg for > 3 hours) demonstrated a reversible inhibition of cellular respiration with maintenance of cell viability, associated with a decrease in mitochondrial adenosine triphosphate (ATP) synthesis; acute hypoxia (similar PO2 for < 30 minutes) did not induce a similar suppression of respiration and ATP synthesis. In the current study, using an in vitro model of primary rat hepatocytes, we measured the changes in metabolic demand for ATP during hypoxic conformance, and tested whether viability is maintained by preferentially suppressing nonessential processes while sustaining processes essential for maintaining cell homeostasis. In addition, the rate of recovery of oxygen consumption and ATP concentrations following reoxygenation after prolonged and acute hypoxia/anoxia was compared. Oxygen consumption and ATP concentrations decreased during prolonged hypoxia compared with acute hypoxia. However, ouabain-inhibitable respiration did not decrease during prolonged hypoxia, indicating that membrane Na+/K+ ATPase activity, an essential process for cell viability, was maintained. In contrast, ATP-dependent glucuronidation and sulfation of acetaminophen, deemed "non-essential" processes, were decreased significantly compared with normoxic cells. After reoxygenation, cells exposed to prolonged moderate hypoxia demonstrated a more rapid recovery of respiration compared to acute hypoxia/anoxia. This "hepatic hibernation" during prolonged moderate hypoxia may represent an anticipatory adaptation that seeks to maintain cell viability while delaying or preventing the onset of lethal hypoxia, and facilitates rapid recovery after the resumption of normoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.