Abstract
Recently, unique cardiorespiratory regions in the RVLM have been found to be oxygen sensitive [1,2]. However, the mechanism of sensing O2 in these RVLM regions is unknown. Since heme oxygenase (HO) has been shown to be involved in the hypoxic responses of the carotid body and pulmonary artery, the aim of our work has been to determine if HO is present in the RVLM, whether expression of HO is altered by chronic hypoxia, and whether HO is necessary for the excitatory response of RVLM neurons. RT-PCR of the RVLM of rats exposed to hypoxia (10% O2) or normoxia for 10 days, revealed that HO-2 is expressed in the RVLM constitutively during both normoxia and hypoxia and that HO-1 is induced during chronic hypoxia [3]. Immunocytochemistry localized these HO isoforms to the C1 region and pre-Botzinger complex (pre-Bot) of the RVLM. Thus, HO isoforms are present in the RVLM cardiorespiratory regions under control and hypoxic conditions, consistent with a potential role for HO in the O2 sensing function of these cardiorespiratory regions. To determine whether HO is important for the oxygen sensitivity of the RVLM, we examined the response of cultured RVLM neurons to chemical hypoxia (NaCN), before and after blocking HO with SnPP-IX, and correlated the hypoxia-excited response with the expression of HO-2 using immunocytochemistry. Primary cultures were prepared from neonatal rats and studied using the whole-cell perforated patch clamp technique. The hypoxia-induced depolarization of these RVLM neurons in response to NaCN was abolished after blocking HO. Examination of these hypoxia-excited neurons showed that they were immunoreactive for HO-2. Further phenotyping found that RVLM neurons that express HO are located in the tyrosine hydroxylase rich C1 sympathoexcitatory region as well as within the neurokinin-1 receptor (NK-1R) rich pre-Bot. In fact, 70% of the neurons expressing HO-2 in the pre-Bot co-express NK-1R suggesting that oxygen sensitivity may reside in some respiratory rhythm generating neurons in the pre-Botzinger complex. Thus, HO is present in the cardiorespiratory regions of the RVLM, HO-1 is induced by chronic hypoxia, and HO is necessary for the excitatory response to chemical hypoxia in RVLM neurons consistent with the presence of HO-2 in these excited neurons. These findings support an important role for HO in the oxygen sensitivity of cardiorespiratory neurons in the RVLM.
Highlights
To be effective, inspiratory muscles on the left and right sides must contract together
We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions
The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)
Summary
Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.