Abstract

Overcoming the chemoresistance of bladder cancer is a pivotal obstacle in clinical treatments. Hypoxia widely exists in solid tumors and has been demonstrated to contribute to chemoresistance through hypoxia-inducible factor1α(HIF‑1α)-mediated autophagy in several types of cancer. However, it is unclear whether HIF‑1α-mediated autophagy and chemoresistance occur in bladder cancer. The present study demonstrated that HIF‑1α was overexpressed in 20bladder cancer tissues compared with matched paracarcinoma tissues. Gemcitabine-induced apoptosis during hypoxia was significantly reduced compared with that observed under normoxic conditions. In addition, hypoxia activated autophagy and enhanced gemcitabine-induced autophagy. Combined treatment using gemcitabine and an autophagy inhibitor (3-methyladenine) under hypoxia significantly increased gemcitabine cytotoxicity. Furthermore, it was demonstrated that hypoxia-activated autophagy depended on the HIF‑1α/BCL2/adenovirus E1B 19kDa protein-interacting protein3 (BNIP3)/Beclin1 signaling pathway. Suppressing HIF‑1α inhibited autophagy, BNIP3 and Beclin1, as well as enhanced gemcitabine-induced apoptosis in bladder cancer cells under hypoxic conditions. Consequently, the results of the present study demonstrated that hypoxia-induced cytoprotective autophagy counteracted gemcitabine-induced apoptosis through increasing HIF‑1α expression. Therefore, targeting HIF‑1α-associated pathways or autophagy in bladder cancer may be a successful strategy to enhance the sensitivity of bladder cancer chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call