Abstract
BackgroundPeritoneal metastasis (PM) is an important pathological process in the progression of gastric cancer (GC). The metastatic potential of tumor and stromal cells is governed by hypoxia, which is a key molecular feature of the tumor microenvironment. Mesothelial cells also participate in this complex and dynamic process. However, the molecular mechanisms underlying the hypoxia-driven mesothelial-tumor interactions that promote peritoneal metastasis of GC remain unclear.MethodsWe determined the hypoxic microenvironment in PM of nude mice by immunohistochemical analysis and screened VEGFA by human growth factor array kit. The crosstalk mediated by VEGFA between peritoneal mesothelial cells (PMCs) and GC cells was determined in GC cells incubated with conditioned medium prepared from hypoxia-treated PMCs. The association between VEGFR1 and integrin α5 and fibronectin in GC cells was enriched using Gene Set Enrichment Analysis and KEGG pathway enrichment analysis. In vitro and xenograft mouse models were used to evaluate the impact of VEGFA/VEGFR1 on gastric cancer peritoneal metastasis. Confocal microscopy and immunoprecipitation were performed to determine the effect of hypoxia-induced autophagy.ResultsHere we report that in the PMCs of the hypoxic microenvironment, SIRT1 is degraded via the autophagic lysosomal pathway, leading to increased acetylation of HIF-1α and secretion of VEGFA. Under hypoxic conditions, VEGFA derived from PMCs acts on VEGFR1 of GC cells, resulting in p-ERK/p-JNK pathway activation, increased integrin α5 and fibronectin expression, and promotion of PM.ConclusionsOur findings have elucidated the mechanisms by which PMCs promote PM in GC in hypoxic environments. This study also provides a theoretical basis for considering autophagic pathways or VEGFA as potential therapeutic targets to treat PM in GC.
Highlights
Peritoneal metastasis (PM) is an important pathological process in the progression of gastric cancer (GC)
This study provides a theoretical basis for considering autophagic pathways or Vascular endothelial growth factor A (VEGFA) as potential therapeutic targets to treat PM in GC
VEGFA derived from peritoneal mesothelial cells (PMCs) acts on VEGFR1 in GC cells under hypoxic conditions, thereby activating the p-Extracellular regulated protein kinases (ERK)/p-c-jun N-terminal kinase (JNK) pathway and increasing the expression of integrin α5 and fibronectin, which are key factors that promote PM of GC
Summary
Peritoneal metastasis (PM) is an important pathological process in the progression of gastric cancer (GC). The metastatic potential of tumor and stromal cells is governed by hypoxia, which is a key molecular feature of the tumor microenvironment. The molecular mechanisms underlying the hypoxia-driven mesothelial-tumor interactions that promote peritoneal metastasis of GC remain unclear. Low oxygen tension, is a key molecular feature of the tumor microenvironment that governs the metastatic potential of tumor and stromal cells. The metastatic microenvironment in GC is complex and dynamic, involving multiple cell types that support gastric cancer metastasis. Among these cell types, peritoneal mesothelial cells (PMCs) play a vital role in PM. Little is known about the molecular mechanisms of hypoxia-driven mesothelial-tumor interactions that underlie PM in GC
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Clinical Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.