Abstract

Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call