Abstract
Sublethal ischemia or hypoxia triggers adaptive changes that protect the brain against future hypoxic/ischemic damage. Preexposure of in vitro hippocampal slices to brief periods of hypoxia increases the resistance of Schaffer collateral-CA1 synaptic potentials to further, longer periods of hypoxia that would otherwise cause an irreversible loss of synaptic transmission. Since hypoxia has been shown to cause alterations in the patterns of protein synthesis, we hypothesized that newly-expressed proteins might mediate hypoxia-induced neuroprotection. We report here that the induction of neuroprotection by hypoxic preconditioning in rat hippocampal slices is blocked by either cycloheximide, a protein synthesis inhibitor, or by Actinomycin D, an inhibitor of RNA synthesis. In contrast, pharmacological blockade of the α-amino-3-hydroxy-5-methyl-4-i sox azolepropionate (AMPA) and N-methyl- d-aspartate (NMDA) subtypes of glutamate receptors did not prevent the induction of neuroprotection by hypoxia. Carbon monoxide (CO), which can lock heme moieties in their oxygenated configurations, did prevent hypoxia from inducing neuroprotection. We conclude that hypoxia activates protective mechanisms via deoxygenation of a heme moiety, triggering expression of gene products which protect synaptic function from subsequent hypoxic damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.