Abstract

Pulmonary hypertension is a common complication of chronic hypoxic lung diseases and is associated with increased morbidity and reduced survival. The pulmonary vascular changes in response to hypoxia, both structural and functional, are unique to this circulation. To identify transcription factor pathways uniquely activated in the lung in response to hypoxia. After exposure to environmental hypoxia (10% O(2)) for varying periods (3 h to 2 wk), lungs and systemic organs were isolated from groups of adult male mice. Bioinformatic examination of genes the expression of which changed in the hypoxic lung (assessed using microarray analysis) identified potential lung-selective transcription factors controlling these changes in gene expression. In separate further experiments, lung-selective activation of these candidate transcription factors was tested in hypoxic mice and by comparing hypoxic responses of primary human pulmonary and cardiac microvascular endothelial cells in vitro. Bioinformatic analysis identified cAMP response element binding (CREB) family members as candidate lung-selective hypoxia-responsive transcription factors. Further in vivo experiments demonstrated activation of CREB and activating transcription factor (ATF)1 and up-regulation of CREB family-responsive genes in the hypoxic lung, but not in other organs. Hypoxia-dependent CREB activation and CREB-responsive gene expression was observed in human primary lung, but not cardiac microvascular endothelial cells. These findings suggest that activation of CREB and AFT1 plays a key role in the lung-specific responses to hypoxia, and that lung microvascular endothelial cells are important, proximal effector cells in the specific responses of the pulmonary circulation to hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.