Abstract
Hypoxia in most solid tumors is a major challenge for photodynamic therapy (PDT), and the combination of hypoxia-activated chemotherapy and PDT is a promising approach for enhanced anticancer activity. Herein, we designed hypoxia-responsive polymeric nanoprodrug PNPs to co-deliver photosensitizer 5,10,5,20-tetrakis(4-aminophenyl)-porphine (TAPP) and chlorambucil (CB) to improve the overall therapeutic efficacy. Upon laser irradiation, the central TAPP converted oxygen to produce single oxygen (1O2) for PDT and induced PDT-reduced hypoxia environment, which accelerated the release of activated CB for synergetic cancer cell killing. Consequently, these hypoxia-responsive polymeric nanoprodrugs with a considerable drug-loading content and synergistic therapeutic effect of PDT-CT had great potential for tumor therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.