Abstract

We have previously shown that hydrogen peroxide stimulates endothelial [Ca(2+)](i) oscillations. This study was performed to determine whether posthypoxic reoxygenation stimulates [Ca(2+)](i) oscillations in vascular endothelial cells. Hypoxia (glucose-free 95% N(2)/5% CO(2) bicarbonate buffer for 60 minutes) stimulated an increase in [Ca(2+)](i) from 111.9+/-7. 9 to 161.7+/-17.7 nmol/L (n=12, P:<0.01) in indo 1-loaded human aortic endothelial cells. On reoxygenation (glucose-containing 95% air/5% CO(2) bicarbonate buffer), 13 of 16 cells responded with repetitive [Ca(2+)](i) oscillations with an average amplitude of 570. 6+/-59.3 nmol/L, occurring at a mean interval of 0.28+/-0.04/min and persisting for >/=60 minutes. [Ca(2+)](i) oscillations were still observed in 4 of 7 cells studied in Ca(2+)-free buffer but did not occur when the intracellular Ca(2+) store was first depleted during hypoxia by either 1 micromol/L thapsigargin or by 10 mmol/L caffeine (n=6 for each). Reoxygenation-induced [Ca(2+)](i) oscillations were abolished by 10 micromol/L diphenyleneiodonium, an inhibitor of NAD(P)H oxidase (n=7), and by polyethylene glycol (PEG)-catalase (5000 U/mL, n=4) but were not prevented by inhibitors of xanthine oxidase (n=5), cyclooxygenase (n=4), nitric oxide synthase (n=5), the mitochondrial electron transport chain (n=4), or by PEG-superoxide dismutase (n=5). Posthypoxic reoxygenation stimulates repetitive [Ca(2+)](i) oscillations that are dependent on Ca(2+) release from an intracellular pool and require extracellular Ca(2+) to be maintained. These oscillations may be initiated by NAD(P)H oxidase-derived hydrogen peroxide and may play a role in signal transduction during ischemia/reperfusion in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.